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The process of vapor transfer in the Stefan regime under the influence of a 
temperature gradient is considered. Expressions are found for the meniscus dis- 
placement rate and time required for liquid evaporation from a capillary. Con- 
ditions under which vapor condenses in the channel are determined. 

Transfer of water in the form of vapor in a porous medium at temperatures lower than 
the liquid boiling point occurs due to diffusion of vapor in the air-filled pore space. The 
process of drying of capillary-porous bodies is often accompanied by development of a tem- 
perature gradient within the body. Thus, the process of diffusion transfer of vapor within 
a capillary is a subject of interest, to which the present study will be dedicated. 

We will consider a cylindrical capillary of specified radius (Kn << I), filled with a 

liquid, from the open surface of which evaporation occurs. We direct the coordinate axis 
from the channel mouth (x = 0) toward the liquid meniscus (x = 1). A constant vapor pres- 
sure Pol < Ps is maintained in the channel mouth (where Ps is the saturated vapor pressure 
at the temperature of the liquid meniscus T(/)). Let the temperature change linearly along 
the channel by a law T(x) = To(l + VTx/To), never exceeding the liquid boiling point. 

In order to determine the meniscus displacement rate d//dt, we will commence from the 
concept that the redistribution of partial pressures of vapor and air produced by change 
in l and Ps(/) due to motion of the liquid-phase boundary occurs much more rapidly than the 
displacement itself, so that for any 1 the vapor flux is described by Stefan's expression 
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The temperature and vapor diffusion coefficient in air are taken as averaged values 

over the air-filled portion of the channel: 
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(where m is a constant number, empirically determined values of which are presented in [2]). 

With increase in l, as follows from the Clayperon--Clausius equation, the saturated 

vapor pressure above the meniscus will change by a law [3] 

Lo vTIvTI) ,}. (4) P~ (z) p~ (o) 

+ J 
If we neglect thermodiffusion fluxes of vapor and air, then from Eq. (i) with con- 

sideration of Eqs. (2)-(4), we can define the dependence of meniscus displacement rate on l: 
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S e p a r a t i n g  t h e  v a r i a b l e s  and i n t e g r a t i n g  bo th  p a r t s  o f  the  e q u a t i o n ,  we o b t a i n  an ex -  
p r e s s i o n  f o r  the  t ime t r e q u i r e d  f o r  r emova l  o f  w a t e r  to a d e p t h  1 in  i n t e g r a l  form 

t - -  RT~ ({ln P--Po, vTI i 1-t ~ 9ldl (6) LovTI (m-- 1)vTI ] 

The r i g h t  s i d e  o f  t h i s  e x p r e s s i o n  can  be i n t e g r a t e d  by n u m e r i c a l  me thods .  In  o r d e r  to 
o b t a i n  an a p p r o x i m a t e  v a l u e  of  the  i n t e g r a l  i t  i s  s u f f i c i e n t  to l i m i t  o u r s e l v e s  to terms of  
second  o r d e r  s m a l l n e s s  in  the  s e r i e s  e x p a n s i o n s  o f  the  e x p o n e n t i a l  and l o g a r i t h m i c  f u n c t i o n s  
in  the  i n t e g r a n d .  E s t i m a t e s  pe r fo rmed  i n d i c a t e  t h a t  t he  u n c e r t a i n t y  in  t d e t e r m i n a t i o n  does  
not exceed 1% at 

I < 0,15 [P - -  P~ (0)] RT~ T~ In .- P - P o ~  (7) 
p,(o) Lo IvTI P --P~ (0) 

If the value of 1 does not satisfy this last expression, 1 can be represented in the 
form of a sum 

n--I 
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where lo = O, I n = l, 
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In this case an expression for t can be obtained by successive integrations of the right 
side of Eq. (6) over each 51 i and summation of the integrals 

where 
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It should be noted that for the case VT > 0 at a certain value of 1 the vapor begins 
to condense on the channel walls, which places a limit on the applicability of Eqs. (5) and 

(8). Conditions for condensation develop when the partial vapor pressure is not less than 
the saturated vapor pressure not only at the meniscus (x = 1), but also in some intermediate 
region (x < l). This is possible when 

dPlax(x) x=~ ~< -~P~dx (x---i) 'x=~ (9) 

The r i g h t  s i d e  of  t h i s  i n e q u a l i t y  i s  d e t e r m i n e d  from Eq. ( 4 ) :  
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The p a r t i a l  v a p o r  p r e s s u r e  d i s t r i b u t i o n  i s  p r a c t i c a l l y  i n d i s t i n g u i s h a b l e  f rom the  i s o t h e r m a l  
distribution at the liquid meniscus temperature. From this fact we can find the total vapor 
flux [4] 

] _  D~P dP 1 (ii) 
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S o l v i n g  t h i s  e q u a t i o n  w i t h  c o n s i d e r a t i o n  o f  Eq. ( 1 ) ,  s e p a r a t i n g  the  v a r i a b l e s  and i n t e g r a t -  
i ng ,  we o b t a i n  
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With consideration of Eqs. (i0) and (13) inequality (9) takes on the form 

(13) 
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Together with Eq. (4) this inequality defines the range of ~ values at which vapor con- 

densation occurs. In particular, for Ps<<P, P01=0, VTI/To<<I, Eq. (14) simplifies signifi- 
cantly: 

R r~ (15) 
l ~ Lo IvTT " 

Vapor may condense on the inner surface either in the form of individual droplets (in 
wide capillaries) or with formation of liquid layers which coat the entire channel section 
(in narrow ones). In both cases the vapor flux in the capillary mouth is determined by 
Stefan's Eq. (i) as before. The vapor flux at the meniscus is greater than the flux in the 
mouth (the difference between the two fluxes being greater, the more intensely condensation 
occurs). Equation (5) and, thus, Eq. (8) become inapplicable, since the rate of meniscus 
displacement is determined by the vapor flux at the meniscus. Since under condensation con- 
ditions 

d G (x) d G  (x) 

dx dx 

the vapor flux can be found from Eq. (ii) with consideration of Eq. (i0): 

Do~P P, (l~ Lo v T  (16) ] =  
v T  l 2 

RTo[P--P, ( I ) ]  RT~ 1 § --~-o ' ),, 

To verify the results obtained experiments were performed with an apparatus in which 
capillaries were located in cylindrical grooves in a massive brass plate. A temperature 
gradient was created on the plate directed along the capillary axes. The value of this 
gradient, determined by thermocouples, was maintained constant over the course of the ex- 
periment. During the experiment a cathetometer was used to determine the meniscus positions 
at various times, allowing determination of the rate of meniscus descent as a function of 
meniscus distance from the capillary mouth. Experiments were performed in capillaries with 
r = 20 ~m at a mouth temperature To = 333~ and partial vapor pressure at the mouth of zero. 
The experimental data are compared to calculations with Eqs. (5) and (8) in Figs. 1 and 2 
(curves i, 2, 3, 4 for 7T = 300, O, --300. and--600~ respectively). Under nonisothermal 
conditions the dependence of dt/dl and ~ on I is nonlinear, in contrast to the isothermal 
case, which is due to the known dependence of saturated vapor pressure on meniscus coordi- 
nate. The amount and direction of the deviation from linearity are determined by the magni- 
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Fig. i. Inverse meniscus displacement rate dt/dl (105 
sec/m) vs meniscus coordinate ~ (10 -3 m) for evaporation 
of distilled water (a) and isopropyl alcohol (b). 
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Fig. 2. Square root of evaporation time /~ (secl/2) for 
distilled water (a) and isopropyl alcohol (b) vs meniscus 
coordinate Z (10 -3 m). Points, experiment; solid lines, 
calculation (Figs. 1 and 2). 
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tude and sign of the temperature gradient. For evaporation of isopropyl alcohol the devia- 
tions from linearity are greater than for water. This is because with other characteris- 
tics approximately equal the difference between the boiling point and the temperature at 
the capillary mouth is less for the alcohol than the water, so that the saturated vapor 
pressure is higher. The breakoff of the curves at VT > 0 indicates the beginning of the 
vapor condensation process. The difference between experimental and theoretical data is 
no greater than 5%, which is within the limits of experimental error. The same can be 
said of the differences in l values at which vapor condensation was observed within the tube 
experimentally and those calculated with Eq. (14). 

NOTATION 

Po~, vapor pressure at capillary mouth; Ps, saturated liquid vapor pressure; P, atmo- 
spheric pressure; x, current coordinate; l, meniscus coordinate; To, temperature of capil- 
lary mouth; VT, temperature gradient; j, vapor flux; ~, molecular weight of vapor; D, vapor 
diffusion coefficient in air; Lo, molar heat of evaporation at temperature To; t, evapora- 
tion time; p, liquid density; Kn, Knudsen number; r, capillary radius. 
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